
JazzScheme:

Evolution of a Lisp-Based 

Development System

Guillaume Cartier

Louis-Julien Guillemette

SFP 2010



Outline

 What is JazzScheme?

 Why JazzScheme?

 Some applications

 History

– Port from C++ to Gambit

 Jedi IDE

 Future work



Why JazzScheme?

 Good question!



Roots

 Little Lisper

 Lisp machines

– Complete programming environment

 Common Lisp

– Macintosh Common Lisp

 Scheme

 Prisme (1990) (screenshots)

– Highly graphical applications for real-life clients

– Full access to the source code of the system







What is JazzScheme?

Development system based on Scheme and Gambit

 Module system

 Hygienic macros

 Object-oriented programming

 Optional typing

 Cross-platform UI based on Cairo

 Binaries for Mac OS X, Windows and Linux

 Lisp-based IDE

http://www.schemers.org/Documents/Standards/R5RS/HTML/
http://www.iro.umontreal.ca/~gambit/


Why (contd.)

 Build commercial software in Lisp

 Promote Lisp

– Not by trying to convince people of its 

advantages

– By creating a Lisp-based development system 

to write complex applications that would have 

been extremely difficult to develop using main 

stream languages (time, cost, feasibility, …) 



Requirements

 Year 1998

 Large-scale enterprise development support

 Open-source

 Built entirely in its own language



Built entirely in Lisp

 Rapid development cycle

– High-level language and tools

– Only one language to learn and master

– Fast evolution

 Live by your word

– New features & optimisations

– Constant testing

– Tribute to Lisp

 Openness to the community



Some applications

 MetaModeler

– Database modeling

 Scheduler (screenshot)

– Automated rule-based scheduler for hospitals

 Uranos

– Enterprise Resource Planning (ERP)

 Jedi

– Lisp-based IDE all written in Jazz





Birth of “classic” Jazz

 Year 1998

 C++-based



Birth of JazzScheme

 Year 2006

 Meeting Marc Feeley

 Jazz becomes open-source JazzScheme

 Scheme-based

– (Chicken, PLT, Bigloo but not Gambit!)

 Port to Gambit



Why Gambit?

 Lightweight, high-quality Scheme implementation

 Conformance (R5RS and IEEE Scheme standards)

 Portability

 Performance

 Reliability

 Debugging

 Rich API
– C foreign-function interface

– Lightweight thread system that can support millions of concurrent 
threads

– Networking

– Unicode support



Port to Gambit

 Scheme was just too great!

– Jazz becomes a radically different language

 We ended up having to

– Port the language from C++ to Gambit

– Port the libraries to the new incompatible language

– Port the UI code from Windows to X11 and Mac OS X

 Lisp’s syntax saves the day

 Port

– 200,000 lines of C++

– 15,000 lines of Scheme



Optimisations

 First working version

– 95x slower than C++-based Jazz

 Statprof

– Statistical profiler used to identify all the 

hotspots

 The current version

– Gambit-based kernel now faster than the old 

C++-based kernel



Class-of

 class-of

– Edit definitions

– Edit references

 %%class-of

– Multi-scheme Jazz (Chicken, PLT, Bigloo)

 Back / forward navigation



The present

 Auphelia

– Christian Perreault

– QT vs Jazz

– Enterprise Resource Planning (ERP)

 Team

 Continuous evolution of the JazzScheme platform

 Part-time collaborators

– Marc Feeley

– Alex Shinn



C4

 Project

 Remote debugger

– Backtrace

– Inspect variable

– Dynamic redefinition



Jedi

 Code walker
– Compile time highlight of errors

 Snapshots
– Uses the same debugger infrastructure as the Jazz, 

Gambit and SWANK debuggers

 Inspector
– Full support for Gambit data types

 Profiler

 View explorer
– F8 / Edit Action Handler on Start Profile



Future work

 Deterministic profiler

 Code coverage

 Console-based REPL

 Stepper

 Designer

 SWANK debugger



Resources

 Website: www.jazzscheme.org
– Documentation

– Tutorials

– FAQ

 Discussion Group
– groups.google.com/group/jazzscheme

 IRC on Freenode
– #jazzscheme

– #gambit



Thank you!



Jazz as a macro

 Usual language development approach

– Write a compiler that generates to a target language

– Write the runtime support (GC, memory management, ...)

– Write an interpreter (optional)

 As a macro

– Reuse of all the work invested in Gambit

– Written in a high-level language

– Only a code walker needs to be developed

– No performance penalty



Text

 Find definitions & references

 Dynamic redefinition

 Incremental search

 Search & replace with IrRegex

 Syntax highlighting

 Clipboard ring

 Mouse copy

 Emacs


